Законы поглощения и склеивания исключения. Законы логики на уроках информатики и икт

Подписаться
Вступай в сообщество «toowa.ru»!
ВКонтакте:

§4. Равносильные, ТИ и ТЛ формулы алгебры логики. Основные равносильности. (Законы логических операций). Закон двойственности.

Определение.

Две формулы алгебры логики А и В называются РАВНОСИЛЬНЫМИ, если они принимают одинаковые логические значения на любом наборе входящих в формулы элементарных высказываний. Равносильность формул будем обозначать знаком º, а запись А ºВ означает, что формулы А и В равносильны.

Формула А называется ТОЖДЕСТВЕННО ИСТИННОЙ (или ТАВТОЛОГИЕЙ), если она принимает значение 1 при всех значениях входящих в неё переменных.

Формула называется ТОЖДЕСТВЕННО ЛОЖНОЙ (или ПРОТИВОРЕЧИЕМ), если она принимает значение 0 при всех значениях входящих в неё переменных.

Между понятиями равносильности и эквивалентности существует следующая связь: если формулы А и В равносильны, то формула А«В – тавтология, и обратно, если формула А«В – тавтология, то формулы А и В равносильны.

Важнейшие равносильности алгебры логики можно разбить на три группы.

1. Основные равносильности.

Законы идемпотентности.

Закон противоречия

Закон исключенного третьего

Закон снятия двойного отрицания

законы поглощения

2. Равносильности, выражающие одни логические операции через другие.

Здесь 3, 4, 5, 6 – законы Моргана.

Ясно, что равносильности 5 и 6 получаются из равносильностей 3 и 4, соответственно, если от обеих частей последних взять отрицания и воспользоваться законом снятия двойного отрицания.

Таким образом, в доказательстве нуждаются первые четыре равносильности. Докажем одну из них: первую.

Так как при одинаковых логических значениях x и y истинными являются формулы https://pandia.ru/text/78/396/images/image018.gif" width="124" height="21">. Следовательно, в этом случае обе части равносильности имеют одинаковые истинные значения.

Пусть теперь x и y имеют различные логические значения. Тогда будут ложными эквивалентность и одна из двух импликаций или . Но при этом будет ложной и конъюнкция .

Таким образом, и в этом случае обе части равносильности имеют одинаковые логические значения.

Аналогично доказываются равносильности 2 и 4.

Из равносительностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

Дальнейшее исключение логических операций невозможно. Так, если мы будем использовать только конъюнкцию, то уже такая формула как отрицание не может быть выражена с помощью операции конъюнкции.

Однако существуют операции, с помощью которых может быть выражена любая из пяти логических операций, которыми мы пользуемся. Такой операцией является, например, операция “Штрих Шеффера”. Эта операция обозначается символом ½ left " style="border-collapse:collapse;border:none;margin-left:6.75pt;margin-right: 6.75pt">

Всего имеется пять законов алгебры логики:

1. Закон одинарных элементов

1 * X = X
0 * X = 0
1 + X = 1
0 + X = X

Этот закон алгебры логики непосредственно следует из приведённых выше выражений аксиом алгебры логики.

Верхние два выражения могут быть полезны при построении коммутаторов, ведь подавая на один из входов элемента “2И” логический ноль или единицу можно либо пропускать сигнал на выход, либо формировать на выходе нулевой потенциал.

Второй вариант использования этих выражений заключается в возможности избирательного обнуления определённых разрядов многоразрядного числа. При поразрядном применении операции "И" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды единичный или нулевой потенциал. Например, требуется обнулить 6, 3 и 1 разряды. Тогда:

В приведённом примере использования законов алгебры логики отчётливо видно, что для обнуления необходимых разрядов в маске (нижнее число) на месте соответствующих разрядов записаны нули, в остальных разрядах записаны единицы. В исходном числе (верхнее число) на месте 6 и 1 разрядов находятся единицы. После выполнения операции "И" на этих местах появляются нули. На месте третьего разряда в исходном числе находится ноль. В результирующем числе на этом месте тоже присутствует ноль. Остальные разряды, как и требовалось по условию задачи, не изменены.

Точно так же при помощи закона одинарных элементов, одного из основных законов алгебры логики, можно записывать единицы в нужные нам разряды. В этом случае необходимо воспользоваться нижними двумя выражениями закона одинарных элементов. При поразрядном применении операции "ИЛИ" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды нулевой или единичный потенциал. Пусть требуется записать единицы в 7 и 6 биты числа. Тогда:

Здесь в маску (нижнее число) мы записали единицы в седьмой и шестой биты. Остальные биты содержат нули, и, следовательно, не могут изменить первоначальное состояние исходного числа, что мы и видим в результирующем числе под чертой.

Первое и последнее выражения закона одинарных элементов позволяют использовать с большим количеством входов в качестве логических элементов с меньшим количеством входов. Для этого неиспользуемые входы в схеме "И" должны быть подключены к источнику питания, как это показано на рисунке 1:


Рисунок 1. Схема "2И-НЕ", реализованная на логическом элементе "3И-НЕ"

В то же самое время неиспользуемые входы в схеме "ИЛИ" в соответствии с законом одинарных элементов должны быть подключены к общему проводу схемы, как это показано на рисунке 2.


Рисунок 2. Схема "НЕ", реализованная на элементе "2И-НЕ"

Следующими законами алгебры логики, вытекающими из аксиом алгебры логики являются законы отрицания.

2. Законы отрицания

a. Закон дополнительных элементов

Выражения этого закона алгебры логики широко используется для минимизации логических схем. Если удаётся выделить из общего выражения логической функции такие подвыражения, то можно сократить необходимое количество входов элементов цифровой схемы, а иногда и вообще свести всё выражение к логической константе.

Еще одним широко используемым законом алгебры логики является закон двойного отрицания.

b. Двойное отрицание

Закон двойного отрицания используется как для упрощения логических выражений (и как следствие упрощения и удешевления цифровых комбинаторных схем), так и для устранения инверсии сигналов после таких логических элементов как "2И-НЕ" и "2ИЛИ-НЕ". В этом случае законы алгебры логики позволяют реализовывать заданные цифровые схемы при помощи ограниченного набора логических элементов.

c. Закон отрицательной логики


Закон отрицательной логики справедлив для любого числа переменных. Этот закон алгебры логики позволяет реализовывать при помощи логических элементов "ИЛИ" и наоборот: реализовывать логическую функцию "ИЛИ" при помощи логических элементов "И". Это особенно полезно в ТТЛ схемотехнике, так как там легко реализовать логические элементы "И", но при этом достаточно сложно логические элементы "ИЛИ". Благодаря закону отрицательной логики можно реализовывать элементы "ИЛИ" на логических элементах "И". На рисунке 3 показана реализация логического элемента "2ИЛИ" на элементе " " и двух инверторах.


Рисунок 3. Логический элемент "2ИЛИ", реализованный на элементе "2И-НЕ" и двух инверторах

То же самое можно сказать и о схеме монтажного "ИЛИ". В случае необходимости его можно превратить в монтажное "И", применив инверторы на входе и выходе этой схемы.

3. Комбинационные законы

Комбинационные законы алгебры логики во многом соответствуют комбинационным законам обычной алгебры, но есть и отличия.

a. закон тавтологии (многократное повторение)

X + X + X + X = X
X * X * X * X = X

Этот закон алгебры логики позволяет использовать логические элементы с большим количеством входов в качестве логических элементов с меньшим количеством входов. Например, можно реализовать двухвходовую схему "2И" на логическом элементе "3И", как это показано на рисунке 4:


Рисунок 4. Схема "2И-НЕ", реализованная на логическом элементе "3И-НЕ"

или использовать схему "2И-НЕ" в качестве обычного инвертора, как это показано на рисунке 5:


Рисунок 5. Схема "НЕ", реализованная на логическом элементе "2И-НЕ"

Однако следует предупредить, что объединение нескольких входов увеличивает входные токи логического элемента и его ёмкость, что увеличивает ток потребления предыдущих элементов и отрицательно сказывается на быстродействии цифровой схемы в целом.

Для уменьшения числа входов в логическом элементе лучше воспользоваться другим законом алгебры логики — законом одинарных элементов, как это было показано выше.

Продолжим рассмотрение законов алгебры логики:

b. закон переместительности

A + B + C + D = A + C + B + D

c. закон сочетательности

A + B + C + D = A + (B + C) + D = A + B + (C + D)

d. закон распределительности

X1(X2 + X3) = X1X2 + X1X3 X1 + X2X3 = (X1 + X2)(X1 + X3) = /докажем это путём раскрытия скобок/ =
= X1X1 + X1X3 + X1X2 + X2X3 = X1(1 + X3 + X2) + X2X3 = X1 + X2X3

4. Правило поглощения (одна переменная поглощает другие)

X1 + X1X2X3 =X1(1 + X2X3) = X1

5. Правило склеивания (выполняется только по одной переменной)

Также как в обычной математике в алгебре логики имеется старшинство операций. При этом первым выполняется:

  1. Действие в скобках
  2. Операция с одним операндом (одноместная операция) — "НЕ"
  3. Конъюнкция — "И"
  4. Дизъюнкция — "ИЛИ"
  5. Сумма по модулю два.

Операции одного ранга выполняются слева направо в порядке написания логического выражения. Алгебра логики линейна и для неё справедлив принцип суперпозиции.

Литература:

Вместе со статьей "Законы алгебры логики" читают:

Любая логическая схема без памяти полностью описывается таблицей истинности... Для реализации таблицы истинности достаточно рассмотреть только те строки...
http://сайт/digital/SintSxem.php

Декодеры (дешифраторы) позволяют преобразовывать одни виды бинарных кодов в другие. Например...
http://сайт/digital/DC.php

Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в...
http://сайт/digital/Coder.php

Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу...
http://сайт/digital/MS.php

Демультиплексорами называются устройства... Существенным отличием от мультиплексора является...
http://сайт/digital/DMS.php

Для преобразования функций, упрощения формул, полученных при формализации условий логических задач, в алгебре логики производятся эквивалентные преобразования, опирающиеся на основные логические законы. Некоторые из этих законов формулируются и записываются так же, как аналогичные законы в арифметике и алгебре, другие выглядят непривычно.

Законы алгебры логики называют иногда теоремами .

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул.

В справедливости всех законов можно убедиться, построив таблицы истинности для левой и правой частей записанного закона. После упрощения выражения с применением законов алгебры логики таблицы истинности совпадают.

Справедливость части законов можно доказать, применяя инструментарий таблиц истинности.

Рисунок 1.

Примеры

Рисунок 3.

Упростим исходное выражение, используя основные законы алгебры логики:

Рисунок 4.

(закон Де Моргана, распределительный закон для И, закон идемпотенции, операция переменной с её инверсией).

Из таблицы видно, что при всех наборах значений переменных $x$ и $y$ формула на рис.2 принимает значение $1$, то есть является тождественно истинной.

Рисунок 6.

Из таблицы видно, что Исходное выражение принимает такие же значения, что и Упрощенное выражение на соответствующих значениях переменных $x$ и $y$.

Упростим выражение на рис.5, применяя основные законы алгебры логики.

Рисунок 7.

(закон Де Моргана, закон поглощения, распределительный закон для И).

Рисунок 9.

Из таблицы видно, что при всех наборах значений переменных $x$ и $y$ формула на рис.8 принимает значение $0$, то есть является тождественно ложной.

Упростим выражение, применяя законы алгебры логики:

Рисунок 10.

Рисунок 12.

(закон Де Могргана, распределительный).

Составим таблицу истинности для выражения на рис.11:

Рисунок 13.

Из таблицы видно, что выражение на рис.11 в некоторых случаях принимает значение $1$, а в некоторых - $0$, то есть является выполнимым.

(правило де Моргана, выносим за скобки общий множитель, правило операций переменной с её инверсией).

(повторяется второй сомножитель, что возможно используя закон идемпотенции; затем комбинируются два первых и два последних сомножителя и используется закон склеивания).

(вводим вспомогательный логический сомножитель

Основные законы алгебры логики и правила преобразования логических выражений

В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (эквивалентные) преобразования логических выражений. Преобразования называются равносильными, если истинные значения исходной и полученной после преобразования логической функции совпадают при любых значениях входящих в них логических переменных.

Для простоты записи приведем основные законы алгебры логики для двух логических переменных А и В. Эти законы распространяются и на другие логические переменные.

1. Закон противоречия:

2. Закон исключенного третьего:

3. Закон двойного отрицания:

4. Законы де Моргана:

5. Законы повторения: A & A = A; A v A = A; В & В = В; В v В = В.

6. Законы поглощения: A ? (A & B) = A; A & (A ? B) = A.

7. Законы исключения констант: A ? 1 = 1; A ? 0 = A; A & 1 = A; A & 0 = 0; B ? 1 = 1; B ? 0 = B; B & 1 = B; B & 0 = 0.

8. Законы склеивания:

9. Закон контрапозиции: (A ? B) = (B ? A).

Для логических переменных справедливы и общематематические законы. Для простоты записи приведем общематематические законы для трех логических переменных A, В и С:

1. Коммутативный закон: A & B = B & A; A ? B = B ? A.

2. Ассоциативный закон: A & (B & C) = (A & B) & C; A ? (B ? C) = (A ? B) ? C.

3. Дистрибутивный закон: A & (B ? C) = (A & B) ? (A & C).

Как уже отмечалось, с помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций: первыми выполняются операции в скобках, затем в следующем порядке: инверсия (отрицание), конъюнкция (&), дизъюнкция (v), импликация (?), эквиваленция (?)

Выполним преобразование, например, логической функции

применив соответствующие законы алгебры логики.

Урок Законы алгебры логики

  • научиться применять законы алгебры логики для упрощения выражений;
  • развивать логическое мышлении;
  • прививать внимательность
  • Опрос законов алгебры логики (на доске).

    Перечислим наиболее важные из них:

  • X X Закон тождества.
  • Закон противоречия
  • Закон исключенного третьего
  • Закон двойного отрицания
  • Законы идемпотентности: X X X, X X C
  • Законы коммутативности (переместительности): X Y Y X, X Y Y X
  • Законы ассоциативности (сочетательности): (X Y) Z X (Y Z), (X Y) Z X (Y Z)
  • Законы дистрибутивности (распределительности): X (Y Z) (X Y) (X Z), X (Y Z) (X Y) (X Z)
  • Законы де Моргана ,
  • X 1 X, X 0 X
  • X 0 0, X 1 1
  • 1-й закон сформулирован древнегреческим философом Аристотелем. Закон тождества утверждает, что мысль, заключенная в некотором высказывании, остается неизменной на протяжении всего рассуждения, в котором это высказывание фигурирует.

    Закон противоречия говорит о том, что никакое предложение не может быть истинно одновременно со своим отрицанием. “Это яблоко спелое” и “Это яблоко не спелое”.

    Закон исключенного третьего говорит о том, что для каждого высказывания имеются лишь две возможности: это высказывание либо истинно либо ложно. Третьего не дано. “Сегодня я получу 5 либо не получу”. Истинно либо суждение, либо его отрицание.

    Закон двойного отрицания. Отрицать отрицание какого-нибудь высказывания — то же, что утверждать это высказывание.

    “ Неверно, что 2*24”

    Законы идемпотентности. В алгебре логики нет показателей степеней и коэффициентов. Конъюнкция одинаковых “сомножителей” равносильна одному из них.

    Законы коммутативности и ассоциативности. Конъюнкция и дизъюнкция аналогичны одноименным знакам умножения и сложения чисел.

    В отличие от сложения и умножения чисел логическое сложение и умножение равноправны по отношению к дистрибутивности: не только конъюнкция дистрибутивна относительно дизъюнкции, но и дизъюнкция дистрибутивна относительно конъюнкции.

    Смысл законов де Моргана (Август де Морган (1806-1871) — шотландский математик и логик) можно выразить в кратких словесных формулировках:

    — отрицание логического произведения эквивалентно логической сумме отрицаний множителей.

    — отрицание логической суммы эквивалентно логическому произведению отрицаний слагаемых.

    1. Установить эквивалентны ли высказывания.

    3. С помощью таблиц истинности доказать законы поглощения и склеивания.

    I. Подача нового материала.

  1. Законы поглощения: X (X Y) X, X (X Y) X
  2. Законы склеивания: (X Y) (Y) Y, (X Y) (Y) Y
  3. Доказать законы логики можно:

    1. с помощью таблиц истинности;
    2. с помощью равносильностей.
    3. Докажем законы склеивания и поглощения с помощью равносильностей:

    4. (X Y) (Y) (X+Y) *(+Y) X* + Y* + Y*Y+ X*Y Y* + Y + X*Y Y* + Y(1+X) Y* +Y Y(+1) Y склеивания
    5. X (X Y) X*X+X*Y X+X*Y X(1+Y) X поглощения
    6. П. Практическая часть

      1. Упрощение формул.

      Пример 1. Упростить формулу (А+В)·* (А+С)

    7. Раскроем скобки (A + B) * (A + C) A * A + A * C + B * A + B * C
    8. По закону идемпотентности A*A A , следовательно, A*A + A*C + B*A + B*C A + A*C + B*A + B*C
    9. В высказываниях А и А*C вынесем за скобки А и используя свойство А+1 1, получим А+А*С+ B*A + B*C A*(1 + С) + B*A + B*СA + B*A + B*С
    10. Аналогично пункту 3. вынесем за скобки высказывание А.
      A + B*A + B*С A (1 + B) + B С A + B*С
    11. 2. Преобразования “поглощение” и “склеивание”

      Пример 2. Упростить выражение А+ A*B

      Решение. A+A*B A (1 + B) A — поглощение

      Пример 3. Упростить выражение A*B+A*

      Решение . A*B + A* A (B + ) A — склеивание

      3. Всякую формулу можно преобразовать так, что в ней не будет отрицаний сложных высказываний — все отрицания будут применяться только к простым высказываниям.

      Пример 4. Преобразовать формулу так, чтобы не было отрицаний сложных высказываний.

    12. Воспользуемся формулой де Моргана, получим:
    13. Для выражения применим еще раз формулу де Моргана, получим:
    14. 4. Любую формулу можно тождественно преобразовать так, что в ней не будут использованы:

    15. знаки логического сложения;
    16. знаки логического умножения,
    17. будут использованы:
    18. знаки отрицания и логического умножения
    19. знаки отрицания и логического сложения.
    20. Пример 5. Преобразовать формулу так, чтобы в ней не использовались знаки логического сложения.

      Решение. Воспользуемся законом двойного отрицания, а затем формулой де Моргана.

      Вывод: В алгебре логики всякую логическую функцию можно выразить через другие логические функции, но их должно быть по меньшей мере 2 операции, при этом одной из них обязательно должно быть отрицание.

      Все операции можно выразить через конъюнкцию и отрицание, дизъюнкцию и отрицание, импликацию и отрицание. Через эквиваленцию и отрицание остальные операции выразить нельзя.

      Задание 1. Установить истинность высказывания .
      Задание 2 Установить является ли высказывание тавтологией?
      Задание 3. Установить эквивалентны ли высказывания.

      1. Формулы данных высказываний преобразовать в эквивалентные, исключив логическое сложение:

      2. Формулы данных высказываний преобразовать в эквивалентные, исключить логическое умножение.

      lunina.21205s09.edusite.ru

      МИР ЛОГИКИ

      Законы алгебры логики и правила преобразования логических выражений

      Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.

      Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

      Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

      Закон

      Формулировка

      1. Закон тождества

      Всякое высказывание тождественно самому себе.

      2. Закон исключенного третьего

      Высказывание может быть либо истинным, либо ложным, третьего не дано. Следовательно, результат логического сложения высказывания и его отрицания всегда принимает значение «истина».

      3. Закон непротиворечия

      Высказывание не может быть одновременно истинным и ложным. Если высказывание Х истинно, то его отрицание НЕ Х должно быть ложным. Следовательно, логическое произведение высказывания и его отрицания должно быть ложно.

      4. Закон двойного отрицания

      Если дважды отрицать некоторое высказывание, то в результате получим исходное высказывание.

      5. Переместительный (коммутативный) закон

      6. Сочетательный (ассоциативный) закон

      При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

      5. Распределительный (дистрибутивный) закон

      (X /\ Y) \/ Z= (X /\ Z) \/ (Y /\ Z)

      (X /\ Y) \/ Z = (X \/ Z) /\ (Y \/ Z)

      Определяет правило выноса общего высказывания за скобку.

      7. Закон общей инверсии Закон де Моргана

      Закон общей инверсии.

      8. Закон равносильности (идемпотентности)

      от латинских слов idem - тот же самый и potens -сильный

      Законы поглощения алгебра логики

      Тема 3. Основы математической логики 1. Логические выражения и логические операции.
      2. Построение таблиц истинности и логических функций.
      3. Законы логики и преобразование логических выражений.
      Лабораторная работа № 3. Основы математической логики.

      3. Законы логики и правила преобразования логических выражений

      Закон двойного отрицания (двойное отрицание исключает отрицание):

      А = = Ú

      Закон идемпотентности (от латинских слов idem - тот же самый и potens - сильный; дословно - равносильный):

    для логического сложения: А Ú A = A ;

    для логического умножения:A & A = A .

    Закон означает отсутствие показателей степени.

    для логического умножения:A & 1 = A, A & 0 = 0 .

A & = 0 .

Невозможно, чтобы противоречащие высказывания были одновременно истинными.

A Ú = 1 .

Из двух противоречащих высказываний об одном и том же предмете одно всегда истинно, а второе - ложно, третьего не дано.

для логического умножения:A & (A Ú B) = A .

Знание законов логики позволяет проверять правильность рассуждений и доказательств. Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), другие — основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Нарушения законов логики приводят к логическим ошибкам и вытекающим из них противоречиям.

Пример 1. Упростить формулу (А Ú В) & (А Ú С) .

  • Аналогично предыдущему пункту вынесем за скобки высказывание А .
    A Ú B & A Ú B & C = A & (1 Ú B) Ú B & C = A Ú B & C .
  • Таким образом, мы доказали закон дистрибутивности.

    Всякую формулу можно преобразовать так, что в ней не будет отрицаний сложных высказываний — все отрицания будут применяться только к простым высказываниям.

    Пример 2. Упростить выражения так, чтобы в полученных формулах не содержалось отрицания сложных высказываний.

    Решение:

    Современные компьютеры, основанные на «древних» электронно-вычислительных машинах, в качестве базовых принципов работы опираются на определенные постулаты. Они называются законы алгебры логики. Впервые подобная дисциплина была описана (конечно, не столь подробно, как в современном виде) древнегреческим ученым Аристотелем.

    Представляя собой отдельный раздел математики, в рамках которого изучается исчисление высказываний, алгебра логики имеет ряд четко выстроенных выводов и заключений.

    С тем чтобы лучше разобраться в теме, разберем понятия, которые помогут в дальнейшем узнать законы алгебры логики.

    Пожалуй, основной термин в изучаемой дисциплине - высказывание. Это некое утверждение, которое не может быть одновременно ложным и истинным. Ему всегда присуща лишь одна из этих характеристик. При этом условно принято истинности придавать значение 1, ложности - 0, а само высказывание называть некой A, B, C. Иначе говоря, формула A=1 означает, что высказывание А истинно. С высказываниями можно поступать самым различным образом. Вкратце рассмотрим те действия, которые можно с ними совершать. Отметим также, что законы алгебры логики невозможно усвоить, не зная этих правил.

    1. Дизъюнкция двух высказываний - результат операции «или». Может быть или ложной, или истинной. Используется символ «v».

    2. Конъюнкция. Результатом подобного действия, совершаемого с двумя высказываниями, станет новое лишь в случае, когда оба исходных высказывания истинны. Используется операция «и», символ «^».

    3. Импликация. Операция «если А, то В». Результатом является высказывание, ложное лишь в случае истинности А и ложности В. Применяется символ «->».

    4. Эквиваленция. Операция «A тогда и только тогда В, когда». Данное высказывание истинно в случаях, когда обе переменные имеют одинаковые оценки. Используется символ «<->».

    Существует также ряд операций, близких к импликации, но в данной статье они рассмотрены не будут.

    Теперь подробным образом рассмотрим основные законы алгебры логики:

    1. Коммутативный или переместительный гласит, что перемена мест логических слагаемых в операциях конъюнкции или дизъюнкции на результате не сказывается.

    2. Сочетательный или ассоциативный. Согласно этому закону, переменные в операциях конъюнкции или дизъюнкции можно объединять в группы.

    3. Распределительный или дистрибутивный. Суть закона в том, что одинаковые переменные в уравнениях можно вынести за скобки, не изменив логики.

    4. Закон де Моргана (инверсии или отрицания). Отрицание операции конъюнкции равносильно дизъюнкции отрицания исходных переменных. Отрицание от дизъюнкции, в свою очередь, равно конъюнкции отрицания тех же переменных.

    5. Двойное отрицание. Отрицание некоего высказывания дважды дает в результате исходное высказывание, трижды - его отрицание.

    6. Закон идемпотентности выглядит следующим образом для логического сложения: x v x v x v x = x; для умножения: x^x^x^=x.

    7. Закон непротиворечия гласит: два высказывания, если они противоречивы, одновременно быть истинными не могут.

    8. Закон исключения третьего. Среди двух противоречивых высказываний одно - всегда истинное, другое - ложное, третьего не дано.

    9. Закон поглощения можно записать таким образом для логического сложения: x v (x^y)=x, для умножения: x^ (x v y)=x.

    10. Закон склеивания. Две соседние конъюнкции способны склеиться, образовав конъюнкцию меньшего ранга. При этом та переменная, по которой исходные конъюнкции склеивались, исчезает. Пример для логического сложения:

    (x^y) v (-x^y)=y.

    Мы рассмотрели лишь наиболее используемые законы алгебры логики, которых по факту может быть многим больше, поскольку нередко логические уравнения приобретают длинный и витиеватый вид, сократить который можно, применив ряд схожих законов.

    Как правило, для удобства подсчета и выявления результатов используются специальные таблицы. Все существующие законы алгебры логики, таблица для которых имеет общую структуру сеточного прямоугольника, расписывают, распределяя каждую переменную в отдельную клеточку. Чем больше уравнение, тем проще с ним справиться, используя таблицы.



    ← Вернуться

    ×
    Вступай в сообщество «toowa.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «toowa.ru»