Виды энергий человека. Формы энергии и виды энергии

Подписаться
Вступай в сообщество «toowa.ru»!
ВКонтакте:

Виды, способы получения, преобразования и использования энергии. Энергия и ее виды. Назначение и использование

Энергия и ее виды. Назначение и использование

Энергия играет решающую роль в развитии человеческой цивилизации. Потребление энергии и накопление Информации имеют примерно одинаковый характер изменения во времени. Существует тесная связь между расходом энергии и объемом выпускаемой продукции.


Согласно представлениям физической науки энергия это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Назовем те ее виды, с которыми люди наиболее часто встречаются в своей повседневной жизни: механическая, Электрическая, электромагнитная и внутренняя. К внутренней энергии, относятся тепловая, химическая и внутриядерная (атомная). Внутренняя форма энергии обусловлена потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.


Если энергия результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.


Если энергия результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.


Основной источник энергии это солнце. Под действием его лучей хлорофилл растений разлагает углекислоту, поглощаемую из воздуха, на кислород и углерод; последний накапливается в растениях. Уголь, подземный газ, торф, сланцы и дрова представляют собой запасы лучистой, энергии солнца, извлеченные хлорофиллом в виде химической энергии угля и углеводородов. Энергия воды также получается за счет солнечной энергии, испаряющей воду и поднимающей пар в высокие слои атмосферы. Ветер, используемый в ветряных двигателях, возникает в результате различного нагревания солнцем земли в разных местах. Огромные запасы энергии заключены в ядрах атомов химических элементов.


В Международной системе единиц СИ в качестве единицы измерения энергии принят джоуль. Если расчеты связаны с теплотой, биологической, электрической и многими другими видами энергии то в качестве единицы энергии применяется калория (кал) или килокалория (ккал).


1 кал = 4,18 Дж.

Для измерения электрической энергии пользуются такой единицей, как Ваттч (Втч, кВтч, МВтч).


1 Вт. ч = 3,6 МДж или 1 Дж = 1 Вт. с.

Для измерения механической энергии пользуются такой единицей, как кг. м.


1 кг. м = 9,8 Дж.

Энергия, которая содержится в природных источниках (энергоресурсах) и может быть преобразована в электрическую, механическую, химическую, называется первичной.


К традиционным видам первичной энергии, или энергоресурсам, относятся: органическое топливо (уголь, нефть, газ и др.), гидроэнергия рек и ядерное топливо (уран, торий и др.).


Энергия, получаемая человеком после преобразования первичной энергии на специальных установках станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т. д.).


В настоящее время широко ведутся работы по применению нетрадиционных, возобновляемых источников энергии: солнечной, ветра, приливов, морских волн, теплоты земли. Эти источники, помимо того, что они возобновляемы, относятся к «чистым» видам энергии, т. к. их использование не приводит к загрязнению окружающей среды.


На рис. 10.1.1 приведена классификация первичной энергии. Выделены традиционные виды энергии, во все времена широко использовавшиеся человеком, и нетрадиционные, сравнительно мало использовавшиеся до последнего времени в силу отсутствия экономичных способов их промышленного преобразования, но особо актуальные сегодня ввиду их высокой экологичности.


Рис. 10.1.1. Схема классификации первичной энергии


На классификационной схеме невозобновляемые и возобновляемые виды энергии обозначены, соответственно, белыми и серыми прямоугольниками.


Потребление энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий: 1. Получение и Концентрация энергетических ресурсов: добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т. д.


2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т. д.


3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию).


4. Передача и распределение преобразованной энергии.


5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной.


Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35—40%, остальная часть теряется, причем большая часть в виде теплоты.

Преимущество электрической энергии

С далеких исторических времен развитие цивилизации и технический прогресс непосредственно связаны с количеством и качеством используемых энергоресурсов. Немногим более половины всей потребляемой Энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет (рис. 10.2.1).


Рис. 10.2.1. Динамика потребления электрической энергии


Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы, ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.


Почему же так быстро растет спрос именно на электрическую энергию, в чем ее преимущество?


Ее широкое использование обусловлено следующими факторами: возможностью выработки электроэнергии в больших количествах вблизи месторождений и водных истоков;

  1. возможностью транспортировки на дальние расстояния с относительно небольшими потерями;
  2. возможностью трансформации электроэнергии в другие виды энергии: механическую, химическую, тепловую, световую;
  3. отсутствием загрязнения окружающей среды;
  4. возможностью применения на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая , что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) - единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) - внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка - использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·10 6 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира - гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел - механическая,
  • энергия молекулярных взаимодействий - тепловая,
  • энергия атомных взаимодей­ствий - химическая,
  • энергия излучения - электромагнит­ная,
  • энергия, заключенную в ядрах атомов, - ядерная.

Гравитационная энергия - энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли - энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и техно­логических.

Тепловая энергия - энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия - это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает , что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии :

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго , кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте - в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мо́щность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени) .

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·10 6 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии. И начнем с электрической энергии , рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .
Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.
Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.
Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.
Энергию в естествознании в зависимости от природы делят на следующие виды.
Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.
К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.
Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.
Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).
Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).
Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).
Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.
Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.
Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.
Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.
Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.
Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.
Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.
Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.
Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.
В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.
К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).
Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).
Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.
Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:
1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.
2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.
3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Закон сохранения энергии

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.
Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.
Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.
Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.
В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.
Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.
Закон сохранения энергии нашел подтверждение в различных областях – от механики Ньютона до ядерной физики. Причем закон сохранения энергии – это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».
Учитывая вышеизложенное, терминологически правильно было бы говорить не «энергосбережение», так как «сберечь» энергию невозможно, а «эффективное энергоиспользование».
и т.д.................

Елена Панова

Детская исследовательская работа

Энергия в природе и во мне

ГБОУ СОШ с. Богатое СП «детский сад «Ромашка»

Руководитель : Панова Елена Викторовна, воспитатель

ГБОУ СОШ с. Богатое СП «детский сад «Ромашка»

1. Введение ---

2. Что такое энергия ? ---

3. Виды энергии ---

4. Практическая работа ---

5. Куда девается энергия ? ---

6. Заключение ---

Приложения ---

Список литературы ---

1. Введение.

Многие взрослые говорят про меня : «Какой энергичный мальчик . Сколько же в тебе энергии ?» Хорошо это или плохо? Вообще, что же такое энергия ? Откуда она взялась? И почему она есть во мне?

Вот это мне и предстоит выяснить в своей исследовательской работе .

Цель исследования : Расширить знания об энергии .

Задачи : Исследовать виды энергии в природе .

Выяснить, какие виды энергии есть во мне .

Объект исследования : энергия в природе .

Предмет исследования : энергия во мне .

Гипотеза : моё знакомство с энергией поможет мне узнать энергия , какими видами энергии обладает человек . И я отвечу на вопрос : «Хорошо ли быть энергичным мальчиком

Актуальность : по словам С. И. Ожегова «…энергия – это мера движения и способность производить работу ». Работа и движение – основа современной жизни.

2. Что такое энергия ?

Любое тело, чтобы расти, двигаться, гореть или вообще что-то делать, нуждается в энергии . Что же такое энергия ?

В словаре С. И. Ожегова сказано об энергии следующее :

1. Одно из основных свойств материи – мера её движения, а так же способность производить работу .

2. Решительность и настойчивость в действиях (взяться с энергией за что-нибудь ) .

И так, энергия – это способность двигаться и производить работу .

Источником почти всей энергии на земле является Солнце. Солнечное тепло согревает сушу, моря и воздух. Оно также порождает ветры, волны. Энергия , содержащаяся в пище, тоже создаётся Солнцем, так как растения поглощают солнечный свет. Энергия , содержащаяся в мясе, образуется из растений, съедаемых животными. Уголь, нефть, природный газ многих миллионы лет тому назад сформировались из останков животных. И энергия своим происхождением обязана химической энергии , накопленной этими растениями и животными.

3. Виды энергии .

Я узнал, что природе существует множество различных видов энергии :

тепловая.

Ею обладают нагретые вещества. Тепловая энергия может распространяться из одного места в другое.

химическая.

Она содержится в пище, в топливе (нефть, уголь, природный газ , в химических веществах.

потенциальная.

Это запас внутренней энергии . К примеру, сжатая пружина обладает потенциальной энергией . Если её отпустить, то эта скрытая энергия высвободится .

электрическая.

Она перемещается по электрическим проводам.

световая.

Это особый вид энергии , который движется по прямой с колоссальной скоростью. Ничто в мире не способно перемещаться быстрее, чем свет.

звуковая.

Распространяется в виде волн, называемых звуковыми.

Используется на атомных электростанциях для производства электричества.

кинетическая.

Это энергия движения . Всё, что движется, несёт в себе кинетическую энергию .

4. Практическая часть.

Узнав о многообразии видов энергии в природе , я решил исследовать некоторые из них .

Исследование 1 .

Я нагрел на огне кастрюльку с водой. Когда вода закипела, я обнаружил, что окружающий воздух тоже нагрелся. Это и есть тепловая энергия , она переместилась от кастрюльки с водой в воздух.

Когда я бегаю, мне становиться жарко, очень хочется пить. Значит, я обладаю тепловой энергией .

Исследование 2 .

Рассмотрев лампочку, я увидел нить. Затем я включил лампочку, нить мгновенно раскалилась, и свет заполнил всю комнату. Это нить лампы распространяет световую энергию . Я потрогал лампочку, она стала горячей – её нагрела нить, потому что световую энергию испускают очень горячие тела. Жаль, что я не обладаю световой энергией .


Исследование 3 .

Зазвенел телефон, я поднёс трубку к уху и услышал мамин голос. Это звуковая энергия . Проходя через воздух, звуковые волны заставляют его колебаться, создавая звуки.

Я решил провести испытание на себе. Положил ладонь на горло и произнёс звук, тут же ощутил колебания. – это звуковые волны. Значит, я могу распространять звуковую энергию .


Исследование 4 .

В нашей квартире есть электрические провода, по ним бежит электрический ток и заставляет электрические приборы работать . Электрический ток чем-то похож на реку, только в реке течет вода, а по проводам текут маленькие-премаленькие частицы-электроны. У нас есть много приборов-помощников, но ими нужно правильно пользоваться! Я знаю, что электричество, при помощи которого работают электроприборы опасно для человека. Поэтому с электричеством никаких исследований я не рискнул проводить. Но есть электричество неопасное, тихое, незаметное. Оно живет повсюду, само по себе, и если его «поймать» , то с ним можноочень интересно поиграть. Я взял шарик, потер его о волосы и приложил к стене той стороной, которой натирал. Вот шарик и повис. Это произошло из-за того, что в наших волосах живет электричество, и я его «поймал» , когда стал шарик тереть о волосы. Он наэлектризовался, поэтому и притянулся к стенке.

Значит, в волосах живёт электричество.



Исследование 5 .

Я узнал, что растения поглощают солнечный свет и преобразуют его в химическую энергию , которая сохраняется в стеблях и листьях. Энергия , содержащая в мясе, образуется из растений, съеденных животными.

Мы принимаем в пищу овощи, фрукты, хлеб, мясо. Значит, в мы вместе с пищей приобретаем химическую энергию , которая нам помогает бегать, ходить, дышать, жить.

Исследование 6 .

Всё, что движется, несёт в себе кинетическую энергию . Я взял два шарика разной массы и пустил их по наклонной доске.

Шарик, который был легче не смог прорвать рамку, а шарик, который был тяжелее, легко прорвал рамку. Это говорит о том, движущиеся тела обладают кинетической энергией , и чем тяжелее тело, тем оно быстрее движется и несёт в себе больший запас кинетической энергии .

Значит, при любом движении, я также обладаю кинетической энергией . По мере взросления, я буду нести в себе больший запас энергии движения .

5. Куда девается энергия ?

Из проведённых исследований я узнал , что основным источником энергий является солнце . Но куда девается энергия ? Проведу некоторые наблюдения.

Наблюдение 1.

Понаблюдаю за кошкой. При приёме пищи кошка приобретает химическую энергию . Когда кошка совершает прыжок, то её химическая энергия переходит в кинетическую. При любом движении вырабатывается тепловая энергия . Получается, что химическая энергия перешла в кинетическую и тепловую.

Наблюдение 2.

Наблюдая за фейерверком, я понял, что химическая энергия , содержащая внутри него, при взрыве перешла в кинетическую, звуковую, тепловую и световую.

Это значит, что энергия никуда не исчезает и не возникает из ничего, она постоянно переходит из одного вида в другой.

6. Заключение.

Моё знакомство с различными видами энергии помогло мне узнать , откуда берётся и куда девается энергия , какими видами энергии обладает человек .

Неслучайно говорят, что «…энергия – это жизнь » . Значит, не так уж и плохо, что я очень энергичный мальчик . В жизни мне это пригодится.

Список литературы.

1. Доусвелл Пауль. Неизвестное об известном. - М.: РОСМЭН, 2001

2. Ожегов С. И. Словарь русского языка. - М.: Русский язык. 1999, с. 911

3. Интернет. Сайт «Идеи для вас»

4. Интернет. Сайт «Умники и умницы, первоклассник, исследование – кто пояснит

5. Энциклопедия «Неизвестное рядом» - М.: РОСМЭН, 2001

6. Энциклопедия «Я открываю мир» - М.: АСТЕЛЬ, 2002



← Вернуться

×
Вступай в сообщество «toowa.ru»!
ВКонтакте:
Я уже подписан на сообщество «toowa.ru»